1 resultado para microRNA

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders whose etiology and molecular pathogenesis are poorly understood. During the past decade, enormous developments in microarray technology and bioinformatics methods have made it possible to mine novel molecular alterations in a large number of malignancies, including MPN and MDS, which has facilitated the detection of new prognostic, predictive and therapeutic biomarkers for disease stratification. By applying novel microarray techniques, we profiled copy number alterations and microRNA (miRNA) expression changes in bone marrow aspirate and blood samples. In addition, we set up and validated an miRNA expression test for bone marrow core biopsies in order to utilize the large archive material available in many laboratories. We also tested JAK2 mutation status and compare it with the in vitro growth pattern of hematologic progenitors cells. In the study focusing on 100 MPN cases, we detected a Janus kinase 2 (JAK2) mutation in 71 cases. We observed spontaneous erythroid colony growth in all mutation-positive cases in addition to nine mutation negative cases. Interestingly, seven JAK2V167F negative ET cases showed spontaneous megakaryocyte colony formation, one case of which also harbored a myeloproliferative leukemia virus oncogene (MPL) mutation. We studied copy number alterations in 35 MPN and 37 MDS cases by using oligonucleotide-based array comparative hybridization (array CGH). Only one essential thrombocythemia (ET) case presented copy number alterations in chromosomes 1q and 13q. In contrast, MDS cases were characterized by numerous novel cryptic chromosomal aberrations with the most common copy number losses at 5q21.3q33.1 and 7q22.1q33, while the most common copy number gain was trisomy 8. As for the study of the bone marrow core biopsy samples, we showed that even though these samples were embedded in paraffin and underwent decalcification, they were reliable sources of miRNA and suitable for array expression analysis. Further, when studying the miRNA expression profiles of the 19 MDS cases, we found that, compared to controls, two miRNAs (one human Epstein-Barr virus (miR-BART13) miRNA and one human (has-miR-671-5p) miRNA) were downregulated, whereas two other miRNAs (hsa-miR-720 and hsa-miR-21) were upregulated. However, we could find no correlation between copy number alterations and microRNA expression when integrating these two data. This thesis brings to light new information about genomic changes implicated in the development of MPN and MDS, and also underlines the power of applying genome-wide array screening techniques in neoplasias. Rapid advances in molecular techniques and the integration of different genomic data will enable the discovery of the biological contexts of many complex disorders, including myeloid neoplasias.